検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 5 件中 1件目~5件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Development of laser system for laser stripping injection

原田 寛之; Saha, P. K.; 米田 仁紀*; 道根 百合奈*; 渕 葵*; 佐藤 篤*; 金正 倫計

JPS Conference Proceedings (Internet), 33, p.011026_1 - 011026_6, 2021/03

炭素膜を用いた荷電変換入射は、世界中で大強度陽子加速器で採用されている。それは、パルス型陽子ビームを大強度で生成する画期的な方法ではあるが、大強度がゆえに大きな課題がある。一つ目の課題は、陽子ビームの通過時もしくは衝突時に生じる膜の変形や破壊による短寿命である。もう一つの課題は、膜で散乱された粒子のビーム損失よる高放射化である。それゆえに、炭素膜に代わる非衝突型の荷電変換入射がさらなる大強度化に必要となる。そこで、本研究ではレーザーのみを使用した荷電変換入射手法を新たに考案した。その新たな手法は、「レーザー荷電変換入射」と呼ばれる。この手法を確立するために、J-PARCでは原理実証実験を計画している。本発表では、J-PARCにおけるレーザー荷電変換入射の実現に向けたレーザーシステム開発の現状を報告する。

論文

レーザー荷電変換入射実現に向けた高出力レーザー蓄積リング

原田 寛之; 山根 功*; Saha, P. K.; 菅沼 和明; 金正 倫計; 入江 吉郎*; 加藤 新一

Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.684 - 688, 2017/12

大強度陽子加速器では、線形加速器で加速された負水素イオンの2つの電子を炭素膜にて剥ぎ取り、陽子へと変換しながら多周回にわたり円形加速器に入射し大強度陽子ビームを形成している。この手法は大強度ビームを形成できる反面、周回する陽子ビームが膜へ繰返し衝突し散乱され、ビーム損失が生じ残留線量となる。また、衝突時の熱付与や衝撃による膜の変形が生じている。これらは、大強度陽子ビームの出力や運転効率を制限する可能性がある。そのため、さらなる大強度出力には炭素膜に代わる新たな荷電変換入射が必要となる。J-PARC 3GeVシンクロトロンでの設計出力を超える大強度化に向けて、レーザーにて電子剥離を行う「レーザー荷電変換入射」を新たに考案し研究開発を進めている。この新たな入射方式の実現には、現存より2桁高い平均出力のレーザーが必要となるため、レーザーを再利用する形で連続的にビームへの照射を可能とする「高出力レーザー蓄積リング」の開発を目指している。本発表では、レーザー荷電変換入射の概要を紹介し、開発を行う高出力レーザー蓄積リングを説明する。加えて、現在の開発状況を報告する。

論文

レーザー荷電変換入射実現に向けた高出力レーザー蓄積リングの開発

原田 寛之; Saha, P. K.; 山根 功*; 加藤 新一; 金正 倫計; 入江 吉郎*

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.983 - 986, 2016/11

大強度陽子加速器では、負水素イオンを炭素膜にて陽子へと変換しながら入射する荷電変換入射を適用している。この入射手法は、大強度の陽子ビームを生成できる反面、ビーム自身が膜で散乱され制御不能なビーム損失が原理的に発生する。また、衝突による膜の破損が生じる可能性がある。大強度陽子ビームの出力や運転効率は、このビーム損失による残留線量や膜の寿命によっても制限される。そのため、さらなる大強度出力には炭素膜を用いた荷電変換入射に代わる新たな入射手法が必須となる。J-PARC 3GeVシンクロトロンでの設計出力を超える大強度化に向けて、レーザーにて電子剥離を行う「レーザー荷電変換入射」を新たに考案し研究開発を進めている。この入射手法を実現するには、既存のレーザーの2桁以上の出力が必要となる。この大きな課題を克服すべく、レーザーを再利用する形で連続的にビームへの照射を可能とする「高出力レーザー蓄積リング」の開発を目指している。本発表では、レーザー荷電変換入射の概要を紹介し、開発を行う高出力レーザー蓄積リングを説明する。

口頭

次世代大強度陽子加速器に向けたレーザー荷電変換入射

原田 寛之; Saha, P. K.; 井上 峻介*

no journal, , 

大強度陽子加速器では、負水素イオンを炭素膜にて陽子へと変換しながら入射する荷電変換入射を適用している。この入射手法は、大強度の陽子ビームを生成できる反面、ビーム自身が膜で散乱され制御不能なビーム損失が原理的に発生する。また、衝突による膜の破損が生じる可能性がある。大強度陽子ビームの出力や運転効率は、このビーム損失による残留線量や膜の寿命によっても制限される。そのため、さらなる大強度出力には炭素膜を用いた荷電変換入射に代わる新たな入射手法が必須となる。本研究では、J-PARC 3GeVシンクロトロンでの設計出力を超える大強度化に向けて、レーザーにて電子剥離を行う「レーザー荷電変換入射」を新たに考案した。本発表では、大強度陽子加速器における今後の課題を説明し、レーザー荷電変換入射手法の概要や原理実証実験に向けた開発現状を報告する。

口頭

J-PARCにおけるレーザー荷電変換実験

原田 寛之; Saha, P. K.; 吉本 政弘; 金正 倫計; 米田 仁紀*; 道根 百合奈*; 渕 葵*; 柴田 崇統*

no journal, , 

大強度陽子加速器では、線形加速器で加速された負水素イオンビームを陽子へと荷電変換しながら入射することで大強度ビームを生成している。この入射手法は、大強度の陽子ビームを生成できる反面、炭素膜に大量のビームを通過させる衝突型の方式であり、膜の短寿命化、膜での散乱粒子による機器の高放射化が、大強度ゆえに世界的な課題となっている。そこでJ-PARCでは、さらなる大強度出力に向けて、炭素膜に代わる非衝突型の「レーザー荷電変換入射」の方式を考案し、その原理実証実験に実施すべく、開発を進めてきた。本研究では、レーザー開発、像転送共振器の開発を行い、2回目となるレーザー荷電変換実験を実施した。レーザーとイオンビーム間の時空間マッチングに成功した。その結果、前回の0.57%の30倍となる16.8%の荷電変換効率を達成した。本発表では、レーザー荷電変換実験の状況とその結果を報告する。

5 件中 1件目~5件目を表示
  • 1